Zarankiewicz’s problem for semilinear hypergraphs

نویسندگان

چکیده

Abstract A bipartite graph $H = \left (V_1, V_2; E \right )$ with $\lvert V_1\rvert + \lvert V_2\rvert n$ is semilinear if $V_i \subseteq \mathbb {R}^{d_i}$ for some $d_i$ and the edge relation consists of pairs points $(x_1, x_2) \in V_1 \times V_2$ satisfying a fixed Boolean combination s linear equalities inequalities in $d_1 d_2$ variables . We show that k , number edges $K_{k,k}$ -free H almost n namely E\rvert O_{s,k,\varepsilon }\left (n^{1+\varepsilon }\right any $\varepsilon> 0$ ; more generally, O_{s,k,r,\varepsilon (n^{r-1 \varepsilon $K_{k, \dotsc ,k}$ r -partite -uniform hypergraph. As an application, we obtain following incidence bound: given $n_1$ $n_2$ open boxes axis-parallel sides $\mathbb {R}^d$ such their -free, there can be at most $O_{k,\varepsilon incidences. The same bound holds instead boxes, one takes polytopes cut out by translates arbitrary finite set half-spaces. also matching upper (superlinear) lower bounds case dyadic on plane, point connections to model-theoretic trichotomy o -minimal structures (showing failure almost-linear definable allows recover field operations from manner).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Zarankiewicz Problem for Intersection Hypergraphs

Let d and t be fixed positive integers, and let K t,...,t denote the complete d-partite hypergraph with t vertices in each of its parts, whose hyperedges are the d-tuples of the vertex set with precisely one element from each part. According to a fundamental theorem of extremal hypergraph theory, due to Erdős [7], the number of hyperedges of a d-uniform hypergraph on n vertices that does not co...

متن کامل

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

no-homomorphism conditions for hypergraphs

In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Improved Bounds for the Graham-Pollak Problem for Hypergraphs

For a fixed r, let fr(n) denote the minimum number of complete r-partite rgraphs needed to partition the complete r-graph on n vertices. The Graham-Pollak theorem asserts that f2(n) = n − 1. An easy construction shows that fr(n) 6 (1 + o(1)) ( n br/2c ) , and we write cr for the least number such that fr(n) 6 cr(1 + o(1)) ( n br/2c ) . It was known that cr < 1 for each even r > 4, but this was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum of Mathematics, Sigma

سال: 2021

ISSN: ['2050-5094']

DOI: https://doi.org/10.1017/fms.2021.52